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Abstract. An anisotropic constitutive model for the long term dimensional stability of 

insensitive high explosives is proposed.  Elastic, creep, thermal, and ratchet growth strains 

are developed.  Pressure and temperature effects are considered. The constitutive model is 

implemented in an implicit finite element code and compared to a variety of experimental 

data. 
 

 

 
Introduction 

 

At Lawrence Livermore National Laboratory 

(LLNL) there is an interest to better understand the 

long term dimensional stability of insensitive high 

explosive (IHE) components. As these components 

survive past their intended design lifetimes, 

margins and uncertainties regarding their 

mechanical performance must be reevaluated. In 

particular, material models that can handle 

transient thermal and mechanical loads over long 

time spans, including creep and stress relaxation 

phenomena are desired. However, current material 

models are inadequate to provide a predictive 

capability. We at LLNL have developed an 

extensive experimental capability to measure the 

mechanical behavior of explosives subject to 

various thermal and mechanical loads. This 

capability has proven invaluable as we seek to 

develop and calibrate our material models. In this 

paper, we develop a constitutive model for IHEs 

that consist of a triaminotrinitrobenzene (TATB) 

explosive and a Kel-F binder. This model is based 

on phenomenological data rather than first 

principles. We implement this constitutive model 

in NIKE3D [1], an implicit FEA code, and 

benchmark its behavior against experimental data. 

Figure 1 shows cross section of a model of a 

typical test specimen undergoing creep. 

Deformations are exaggerated by 15 times in this 

figure. 

   
 

Fig. 1. Typical Creep Compression Test Specimen. 

 



One Dimensional Strains  

 

Over a variety of conditions, a linear 

relationship between creep strain and the logarithm 

of time was observed for constant uni-axial loads 

and fixed temperatures. Figure 2 shows a typical 

sample of this data for a variety of temperatures (-

54 to 70 C) and stresses (250 to 780 psi). 

 
Fig. 2. Creep Strain as Function of Time for a 

Variety of Uni-axial Stresses and Temperatures. 

 

Preserving this log-linear creep response 

limits the form the material model can take. In this 

paper the total strain is decomposed into the 

following components: elastic strain, recoverable 

creep (visco-elastic like), non-recoverable creep 

(damping like), thermal expansion, and ratchet 

growth. The creep strain is further decomposed 

into hydrostatic and deviatoric components. Each 

of the strain components is assumed to respond 

independently to the applied stress and each is 

consistent with the observed log-liner behavior. 

This log-linear relationship may be expressed 

in equation form is, 

log
0

t
g

t
  (1) 

where g  is the log slope and is a function of both 

stress and temperature. The variable t  represents 

the time that the material has been under stress 

while 0t  represents the time at which the strain in 

this relationship is zero. Clearly, this relationship 

is not valid for times less than 0t . Typical values 

of 0t  are much smaller than one second. 

Experiments suggest that this relationship is valid 

from minutes to at least months. We found that 0t  

may be assumed to be a function of temperature 

only. We further found that the coefficient, g , 

may be accurately deconvolved into a quadratic 

function of stress multiplied by a function of 

temperature as shown below, 

g ab  (2) 

1 2a a c c  (3) 

b b T  (4) 

where 1c  and 2c are constants. The function b, as a 

function of temperature, is shown in Figure 3. 

Figure 4 shows the function g  as a function of 

stress for a variety of temperatures. This figure 

also shows the experimentally measured log-

slopes used to calibrate these curves.  

 
Fig. 3. Temperature Dependent Coefficient,b, of 

The Log Slope. 

 

One-Dimensional Elastic Strains 

 

The strain is decomposed into elastic and 

creep components, and the time is offset by Et , 

such that creep strain is zero at time zero: 

0
log log

E E

E

t t t
g g

t t
 (5) 

The first term in this equation is the elastic 

component of strain and the second term is the 

creep component of strain. For the IHE examined 

in this paper a time of 20 seconds was found to be 
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appropriate for 0t . Note that 
Et t  is large for the 

time scales of interest. The value of Et  is assumed 

to be constant. The physical interpretation of this 

decomposition may be thought of as allowing an 

initial elastic strain and then immediately picking 

up the log-linear creep curve staring at the time 

consistent with that strain. As a result of this 

assumption, loads of a very short duration result in 

an effectively elastic response. Figure 5 shows the 

values of 0t  based on the experimental strain data 

fit at Et  and the log slope calculated in equation 2. 

 
Fig. 4. Log-Slope as a Function of Stress for 

Various Temperatures. 

  

Fig. 5. 0log t  vs. time. 

 

Three-Dimensional Generalization 

 

The one dimensional creep model is 

generalized to three dimensions by generalizing 

the function a  as follows,  

'
1 1 1
d d v d

ij ijkl jk ijkl kla c c C c C  (6) 

1 1 1
d vc c c  (7) 

Where 1
dc  and 1

vc  are the devitoric and volumetric 

components of the compliance tenors, 

respectively. The super bar indicates that the 

tensor has been normalized by the 1111 value. 

This normalization is not arbitrary, but 

corresponds to our one dimensional calibration test 

data. The coefficient 1c  is split into a deviatoric 

component, 1
dc , and a volumetric component, 1

vc . 

The ratio between these two material properties 

contains the “Poisson‟s ratio” information that was 

lost when the compliance tensor was split and 

normalized. This generalization retains the one 

dimensional response while allowing for three 

dimensional and anisotropic behavior. It should be 

noted that the volumetric response is assumed to 

be linear with regard to stress. We have limited 

data to support this assumption.  

 

Elastic Strains 

 

The deviatoric elastic strain Ed
ij  may now be 

written explicitly as, 

'
1 2 0

log
E

Ed d v
ij ijkl kl

t
c c C

t
 (8) 

Likewise the elastic volumetric strain, Ev  may be 

written  as, 

1 0
log

E
Ev v v

ijkl kl

t
c C

t
 (9) 

 

Recoverable Devitoric Creep Strains 

 

The recoverable (visco-elastic like) devitoric 

creep is modeled with n sets Voigt elements per 

strain direction. Each Voigt element consists of a 

spring and dashpot connected in parallel while the 

Voigt elements are connected in series. The 
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recoverable strain is thus found by summing the 

internal Voigt strains, 

1

n
rd rd
ij ijs

s

 (10) 

In order to capture the correct log-slope, the Voigt 

parameters are found to be functions of stress and 

temperature. For a given stress and temperature, 

the Voigt parameters may be found such that, the 

change in the internal Voigt stains over a time 

interval are, 

1
rd
s trd rd rd

ijs ij ijsa e  (11) 

where 

0

s
rd
s

e

b
 (12) 

'
1 2

rd d d
ij ijkl jka c c C  (13) 

where  is a parameter that scales the spacing of 

the characteristic response times. This selection of 

Voigt parameters ensures the correct average log-

slope and that the characteristic response times are 

functions of temperature only. The long term 

equilibrium strains are functions of stress only. 

The average log-slope is not a function of , 

however, the smaller b  is, the smoother the 

response curve will be, and the higher n  will need 

to be for the response to be valid over the time 

scale of interest. The value of s  is set to ensure 

that the log linear fit for a given b  crosses zero 

strain at Et  (20 sec). Figure 6 shows a typical 

creep response for a b  of 2 and 6, and an n  of 

12 and 4, respectively. 

 

The linear range in this figure is from 10‟s of 

seconds to hundreds of years. Note that a b of 6 

is too large and the response significantly deviates 

from linear. 

 

Recoverable Volumetric Creep Strains 

 

The recoverable (visco-elastic like) volumetric 

creep is modeled in a similar fashion, 

1

n
rv rv

s

s

 (14) 

 

  
Fig. 6. Log-Linear Respons of Recoverable Creep. 

 

where rv  is the recoverable volumetric strain. 

This volumetric strain likewise evolve over a time 

interval as follows, 

1
rv
s trv rv rv

s sa e  (15) 

0

s
rv
s

e

b
 (16) 

1
rv v v

ijkl jka c C   (17) 

 

Non-recoverable Devitoric Creep Strains 

 

Non-recoverable creep strains are the 

components of the creep strain that will not 

recover to its original state without an external 

load. The non-recoverable devitoric creep strains 

are modeled essentially as damping that increases 

as the material is worked. An „effictive creep 

surface‟ similar to a yield surface is conceived. 

Thus, depending on the direction of creep, the 

perceived creep that has already occurred will 

differ, and therefore so will the current creep rate. 

Figure 7 shows a two dimensional representation 

of this surface. 
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Fig. 7. Two-Dimensional Representation of 

Effective Creep Surface. 
 

The flow direction of the non-recoverable 

devitoric creep is defined by the unit tensor,  

1 2
ˆ

ij

ij

kl kl

q

q q
 (18) 

d
ij ijkl klq C  (19) 

For a “spherical” effective creep surface the 

perceived creep strain magnitude, or the distance 

in tensor space from the origin to the effective 

creep surface, can be shown to be, 
1 2

2 2p
ij ijr c c  (20) 

îj ijc  (21) 

where ijc  represents the location of the center of 

the surface in strain space and the radius, r . Using 

the one dimensional log-linear creep relationship 

in equation 5, a perceived time, pt , may be 

calculated as a function of the perceived creep 

strain magnitude, 

1

p

ndp E a bt t e  (22) 

1 2
'

1 2 11 11
nd d d d

ij ija c c C C  (23) 

Note that the stress dependent log slope coefficient 

“ a ” is scaled to account for the fact that it was 

originally normalized to calculated the log slope of 

11 , but this formulation utilizes the magnitude of 

the full strain tensor. Base on this perceived time, 

the one dimensional log-linear response, and the 

direction of creep, the change in the non-

recoverable devitoric creep strain over a time 

increment is be found to be,  

ˆlog
p

nd nd
ij ijp

t t
a b

t
 (24) 

The evolution of the surface is determined by the 

kinematic damping parameter , 
nd

ij ijc  (25) 

This parameter determines how much the center of 

the surface is „dragged‟ versus expanded. When  

is zero, the surface center remains at the origin.  

For monotonic loading  does not affect the 

material behavior. In order to remain on the 

surface, the radius of the surface must evolve as 

follows, 

 

ˆ ˆp
ij ij ij ijr c c r  (26) 

This formulation ensures that, if the stress and 

temperature remain constant over a period of time, 

then the creep strain obtained will not be 

dependent on time the step size. 
  

Non-recoverable Volumetric Creep Strains 

 

The non-recoverable volumetric strain is 

calculated in a similar fashion the recoverable 

devitoric strain. The perceived strain is found to 

be, 
p c r  (27) 

ii

ii

 (28) 

where  is the direction of volumetric creep. The 

perceived time may be similarly calculated as, 

1

p

nvp E a bt t e  (29) 

1
nv v v

ijkl jka c C  (30) 

And the non-recoverable volumetric creep strain 

and state variables likewise evolve over a time 

interval as follows, 

log
p

nv nv

p

t t
a b

t
 (31) 

r 



nvc  (32) 

p nvr c c r  (33) 

 

Confining Pressure 

 

We found experimentally that increasing the 

confining pressure slows the devitoric creep strain 

in uni-axial compression tests more than the 

reduction in von Mieses stress would otherwise 

predict. We assume an equivalence between the 

stress state and the temperature to account for this 

effect. To capture this effect b  is substituted for 

b  in the devitoric creep formulations. To calculate 

,b  b  is scaled by , 

b b  (34) 

Figure 8 shows the function  as a function of 
'

ii . 

  
Fig. 8. as a function of 

'
ii .  

 

This formulation provides a better fit to 

available data than if lambda was a function of ii  

alone. Note that for uni-axial compression with no 

confining pressure equals one. The right half of 

Figure 8 is largely speculation.  

 

Figure 9 and Figure 10 show a comparison 

between the modeled and experimentally 

determined values of the log-slope for a number of 

temperatures, axial compressive stresses, and 

confining pressures. Each line on the graph 

represents a given axial stress and temperature. 

The abscissa of the graph is the Tresca stress, 

which in this case is the axial compressive stress 

subtracted from the confining pressure. The left 

side of the graph represents hydrostatic loading, 

while the terminus of each line represents the 

unconfined axial loading condition. 

   
Fig. 9. Experimentally Measured Log-Slope 

  
Fig. 10. Model prediction of the Log-Slope. 

 

It should be noted that the function   and 

constant 1c  were calibrated using this data. 

 
Thermal strains 

 

The thermal strains are typically anisotropic in 

IHE‟s. This anisotropy is dependent on the 

pressing environment and is assumed to remain 

constant throughout the material‟s life. The 

magnitude of the thermal strains is assumed to be a 

non-linear function of temperature and is modeled 

as, 
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 (35)  

Where ij  represents the thermal anisotropy 

tensor,  secant coefficient of thermal expansion, 

and T  and refT  are the temperature and reference 

temperature respectively. The value ii  must be 

equal to one, in order for it not to change the 

volumetric thermal strain. 
 

Ratchet Growth Strains 

 

Ratchet growth is a phenomenon where cycling 

the temperature (above a threshold, critT ) causes a 

permanent increase in volume. We assume that 

each temperature range cycled through has an 

asymptotically approached maximum ratchet strain 

associated with it. Experiments have shown that 

the ratchet growth effect is enhanced if there is a 

cold cycle (below a threshold, cutT ) before a hot 

cycle and that ratchet growth is suppressed by 

pressure. The volumetric ratchet growth, rat , is 

calculated by integrating the ratchet growth 

associated will each differential temperature range, 

thus, 

crit

rat rat

T
d  (36) 

where  is a dummy variable used to represent 

temperature.  Ratchet growth is assumed to occur 

when the temperature is increasing and above  
critT . The function max  represents the maximum 

ratchet growth that can be obtained by cycling 

between 
critT  and a given temperature , and 

max  is its derivative with respect to the given 

temperature, 
max

max d

d
 (37) 

Each time the temperature is above 
critT , and 

passes a given temperature on an up cycle, the 

corresponding value of 
rat

 is incremented a 

fraction of the way to its asymptotic value. The 

change in 
max

is calculated using the closing 

fraction, 1z . This produces an exponential 

approach, if cycling between any two 

temperatures. The ratchet strain is not allowed to 

ratchet down, thus, 

max rat
1rat 1

max
0

z w
 (38) 

where  is a function that enhances the ratchet 

growth depending on the cold history, and w  is a 

function that suppresses it depending on the 

current pressure. The value of w  ranges between 

zero and one and  is always positive. 

3cut cold
2

z

z T  (39) 

The value of 
cold  is the lower of cutT  or the 

coldest temperature that the material has seen since 

it was last at the given temperature. The sensitivity 

to cold cycles is determined by the constants 2z  

and 3z . Figure 11 shows a ratchet response (linear 

strain) for a data set [2] that may be used to 

calibrate the constants 1z , 2z  and 3z . Figure 12 

show the corresponding temperature history . Note 

the model deviates from the data when the cold 

cycle is -130 C, which is colder than our 

temperature range of interest. 

 

   
Fig. 11. Comparison Between Ratchet Growth in 

Experiment and Model. 
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Fig. 12. Temperature History for Ratchet Growth 

Comparison 

 

Ratchet growth is often an anisotropic 

phenomenon. This is captured with an anisotropic 

ratchet growth coefficient, 
rat
ijC  

 (40) 

The value 
rat
ijC  must be equal to one, in order for 

it not to change the volumetric ratchet growth.  

Functions of temperature are discretized into 

evenly spaced arrays. Linear shape functions are 

assumed and values are updated accordingly 

 

 

Putting it all together 

 

In order to find the total deformation each of the 

strain components must be summed. However, 

because both the recoverable and non-recoverable 

strains were formulated to creep at the log-slope of 

a given material, when both are added directly 

together, the creep will be overstated.  By adding a 

volume fraction of each creep formulation, in 

series, the proper behavior is preserved.   

 

  (41) 

The parameter  represents the volume fraction 

of the recoverable creep formulation.  This 

parameter essentially determines how much the 

material will rebound when unloaded.  The value 

of mu is typically around one half. Figure 12 

shows the model response to a uniform load 

followed by its removal at about 170 hours.  

Figure 14 shows the creep response to a load that 

is cycled on and off in a square wave.  

  
Fig. 13. Numerical and Experimental Creep and 

Recovery Data. 

 

 
Fig. 14. Numerical and Experimental Creep 

Response to a Cyclic Square Wave at 500psi and 

20 C 

 

Summary 

 

In summary we develop in this paper a 

comprehensive long time duration model for IHE‟s 

and show experimental validation for a variety of 

creep behaviors including cyclic loading, 

hydrostatic loading, uni-axial loading, and creep 

where the third principle stress is varied 

independently from the first two.  Creep at various 
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temperatures is also considered. The strain 

response of this model is independent of time step 

size, provided the stress and temperature remain 

constant. This model has been formulated in three 

dimensions and implemented in NIKE3D for use 

in large scale analyses. 
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